• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " Surface Go3"에 대한 통합 검색 내용이 382개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
유동 해석 소프트웨어, Simcenter Flotherm
유동 해석 소프트웨어, Simcenter Flotherm   주요 CAE 소프트웨어 소개    ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.plm.automation.siemens.com/global/ko ■ 자료 제공 : 지멘스 디지털 인더스트리 소프트웨어, 02-3016-2000, www.plm.automation.siemens.com/global/ko / 델타이에스, 070-8255-6001, www.deltaes.co.kr    Simcenter Flotherm(심센터 플로섬)은 온도 및 공기 흐름을 시뮬레이션할 수 있는 전자 제품의 열 디지털 트윈을 생성한다. SmartParts(히트싱크, 팬, 인클로저, TEC, PCM 등)와 사용자 정의 가능한 부품 라이브러리 시스템을 사용해 전자 제품에 대한 열 디지털 트윈을 쉽게 만들 수 있다. 더불어 모든 MCAD 시스템에서 나온 지오메트리를 SmartParts로 가져와 효율적으로 변환할 수 있다. ODB++와 같은 표준 EDA 형식 지원 기능으로 열 디지털 트윈을 설계 과정에 존재하는 모든 PCB 레이아웃 도구와 동기화할 수 있다. Simcenter Flotherm의 Instamesh 직교 기반 그리드 시스템은 어느 디지털 트윈에든 즉시 그리고 일관적으로 생성할 수 있으며, 수천 개 파트가 포함된 디지털 트윈도 문제 없다. Instamesh 시스템을 사용하면 열 엔지니어가 그리드 품질 문제 없이 Command Center(내장 파라메트릭 및 최적화 모듈)를 사용해 설계를 탐색할 수 있다. Simcenter T3STER와도 측정을 사용한 자동 교정으로 대개 99% 이상 열 디지털 트윈의 정확도를 유지한다. 1. 주요 기능 (1) 강력한 ECAD 연결성 Simcenter Flotherm의 EDA Bridge 모듈을 이용하여 Mentor의 BoardStation 및 Xpedition 제품군, Cadence Allegro 및 Zuken CR5000에 대한 데이터를 활용할 수 있다. IDF 및 ODB++ 파일 가져오기를 지원하여 Mentor의 PADS 및 기타 EDA 소프트웨어를 지원한다. EDA Bridge 모듈을 사용하면 라이브러리에서 열 모델로 교체할 수 있으며 크기, 파워 그리고 파워 밀도를 바탕으로 필터링할 수 있다. 또한 csv 파일 형태의 파워 리스트를 가져오거나 내보낼 수 있다. HyperLynx PI에서 계산한 파워맵 정보를 가져와서 해석하는데 활용할 수 있다. (2) 빠르고 강력한 메싱 및 솔루션 Simcenter Flotherm의 구조화되지 않은 Cartesian 기반 InstaMesh 기술은 현대 전자제품에서 발견되는 복잡성 수준과 개별 개체 수를 처리할 수 있는 Windows 및 Linux의 멀티 코어 병렬 솔버를 통해 즉각적이고 강력한 메싱을 제공한다. 메시 설정은 객체가 모델 내에서 이동되거나 향후 사용 및 공유를 위해 라이브러리에 추가되는 경우 형상의 해상도를 유지한다. (3) 전자 어셈블리 모델링 Simcenter Flotherm은 광범위한 PCB 모델링 레벨을 제공하여 개발 워크플로에서 데이터를 사용할 수 있게 되면 솔루션 속도와 정확성을 극대화한다. 간단한 블록 모델은 보드 또는 레이아웃의 세부 사항이 명확해지기 전에 초기 설계에서 효과적인 PCB 열전도도를 계산하기 위해 분석 접근 방식을 사용한다. 후기 설계에서 Simcenter Flotherm의 금속 분포 이미지 기반 처리는 기판 전체에 걸쳐 구리 변동의 국부적 효과를 효율적으로 포착한다. (4) 디자인 공간 탐색 및 최적화 Simcenter Flotherm과 함께 제공되는 Command Center 모듈에는 DoE(Design-of-Experiment) 및 RSO(Response Surface Optimization)가 포함되어 있으며, 어떤 입력 매개변수 조합이 구성 요소 온도와 같은 선택된 출력 변수에 가장 큰 영향을 미치는지 식별하는 상관 매트릭스가 있다. Simcenter Flotherm은 HEEDS를 사용한 다 분야 최적화를 위해 HEEDS 포털을 통해 액세스할 수 있다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-01
유한요소 해석 모델링 솔루션, Patran
유한요소 해석 모델링 솔루션, Patran   주요 CAE 소프트웨어 소개   ■ 개발 : MSC Software, www.mscsoftware.com/kr ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr   1. Patran : 완벽한 유한요소 해석 모델링 솔루션 Patran(파트란)은 유한요소 해석(FEA)을 위해 세계에서 가장 널리 사용되는 전/후 처리 소프트웨어로 MSC Nastran, Marc, Abaqus, LS-DYNA, ANSYS, Pam-Crash 등 다양한 분야의 해석 솔버를 지원하고 이에 필요한 요소 모델링, 메시, 해석 설정 및 결과를 검토할 수 있는 후처리과정 기능을 제공한다. 유한요소 해석을 위한 포괄적인 전/후 처리 기능을 통해 엔지니어가 제품 설계를 더욱 좋은 품질로 개발 및 테스트하는데 도움을 준다. Patran은 설계, 해석 및 결과 평가를 연결해주므로 세계 최고의 제조사에서 시뮬레이션 모델의 생성 및 해석을 위한 표준도구로 사용하고 있다. Patran은 선형, 비선형, explicit dynamics, 열 해석 및 여러 분야의 유한요소 해석용 모델 생성과정을 간소화할 수 있는 폭넓은 도구를 지원한다. 설계된 CAD 모델을 불러왔을 때 존재하는 간격(gap)과 조각(sliver)을 쉽게 정리할 수 있는 geometry clean-up 도구부터, 형상을 처음부터 쉽게 생성할 수 있는 솔리드 모델링 도구까지 Patran을 사용하면 보다 쉽게 해석 모델을 만들 수 있다. 자동 메시 방법과 수동 메시 방법을 이용하거나 두 방법을 조합하면 1D, 2D, 3D CAD 모델을 편하게 메시할 수 있으므로 사용자가 유연하게 쓸 수 있다. 또한, 다양한 분야에서 사용되는 해석 솔버에 대한 하중, 경계조건 및 해석 설정을 지원하므로 입력파일을 편집해야 하는 수고를 최소화한다. 업계 테스트를 수년간 거친 Patran의 포괄적인 기능을 통해 가상의 개발 초기 구조물의 평가를 신속히 할 수 있고, 제품 성능에 필요한 요구사항을 검토하여 설계를 최적화하는데 도움이 된다. 2. 주요 기능 ■ 자동/대화형 Feature 인식과 함께 CAD geometry에 직접 접근할 수 있는 직관적인 그래픽 인터페이스 ■ 여러 MSC Software 솔버 및 타사 솔버를 지원 ■ 향상된 mesh-on-mesh 기능으로 강력한 자동 surface 및 solid 메시 생성 ■ Pre-load가 있는 연결요소 및 볼트 모델링 ■ 비선형 해석을 위한 전체 3D 컨택 시나리오를 쉽게 정의 ■ MSC Nastran 최적화 해석용 작업 ■ 대형 요소 모델을 해석하기 위한 슈퍼엘리먼트 정의 ■ Marc를 위한 연성 해석 사례 생성 ■ 다양한 후처리 도구를 사용하여 결과를 검토 ■ Result template를 통한 결과 표준화 구현 ■ Patran Command Language (PCL)로 사용자 맞춤형 인터페이스 생성 3. 적용 효과 ■ 설계 및 제품 개발 프로세스의 생산성 증대 ■ 해석으로 제품 테스트 시간 및 비용 절감 ■ 다분야 해석 및 최적화로 생산성과 정확성 향상     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-30
박판성형 해석, PAM-STAMP
박판성형 해석, PAM-STAMP   주요 CAE 소프트웨어 소개     ■ 개발 : ESI, www.esi-group.com ■ 자료 제공 : 한국이에스아이, 02-3660-4500, www.esi-group.com   ESI의 PAM-STAMP는 금형 공법 설계와 프레스를 사용한 모든 성형 해석이 가능한 소프트웨어로, 엔지니어는 PAM-STAMP를 활용하여 금형 공법 설계 및 프레스 성형 공정 최적화를 쉽고 빠르게 진행할 수 있다. PAM-STAMP는 냉간 성형, 고온 성형, 관재를 이용한 굽힘 성형, TWB, Patched blanks 등 다양한 제조 공정이 가능하다. 이는 자동차, 전자, 항공, 조선 등 다양한 분야에서 사용하고 있다.   1. 제품의 주요 기능 및 특징 (1) 제품 역전개 해석(Inverse) 제품 형상, 물성치, 두께 정보만 입력하여 초기 블랭킹 라인 및 제품 성형 가능성의 검토를 예측할 수 있다. (2) 공법 설계(Die Maker for CATIA v5) 제품 데이터를 이용하여 설계자의 설계 의도대로 쉽고 빠르게 공법 설계를 수행할 수 있다. 일반 CAD System을 사용하는 것보다 상당히 빠르고 쉽게 공법 설계를 수행할 수 있으며, 해석과 연계 시 빠르게 공법 정의가 가능하다. (3) 고장력 강판 스프링백 해석(Springback) 고장력 강판의 경우 일반 Mild Steel에 비해 스프링백이 매우 크게 나타나기 때문에 예측의 어려움이 많다. 하지만 Yoshida-Uemori 방정식을 이용하면 정확도가 향상된 결과를 확인할 수 있으며, 이를 실제에 적용하여 사용할 수 있다. (4) 스프링백 자동 보정 해석(Die Compensation) 높은 스프링백 정확도를 바탕으로 자동 금형 보정을 수행한다. 또한 수정된 금형을 바탕으로 검증해석을 진행하며, 사용자가 원하는 치수 오차 범위까지 자동으로 금형 보정을 진행한다. 보정된 금형은 CAD 파일로 생성이 가능하며 기존 파일과 동일한 Quality를 가지기 때문에 NC 데이터로 활용하는 것 또한 문제가 없다. (5) 프레스/롤 헤밍 공정(Press Hemming/Roll Hemming) 두 판넬에 대한 프레스 헤밍 및 롤 헤밍 해석이 가능하다. 이를 통해 제품 단차 및 Break Line 위치를 사전에 예측할 수 있다. (6) TWB 해석(Tailor-Welded Blank) 이종 소재 및 두께가 다른 두 소재를 용접하여 사용하는 TWB 공법에 대한 해석이 가능하다. PAM STAMP 해석을 통하여 최적 용접라인 위치 및 용접라인의 이동량을 체크하는 것이 가능하다. (7) 핫프레스 포밍(Hot Press Forming) 블랭크를 고온으로 가열 시 발생하는 팽창 및 공기에 의한 냉각 및 열 수축, 금형과의 열전달이 고려된 성형해석이 가능하다. 또한 금형 냉각채널 위치에 따른 냉각 성능해석이 가능하여 최적의 냉각채널 설계에 도움을 준다. (8) 금형 구조 해석(Deformable Tool) 일반적인 성형해석은 해석 시간 때문에 금형의 변형을 고려하지 않는다. 하지만 고장력강에 의해 금형이 변형하는 사례가 빈번히 발생하며, 이를 해석적으로 사전에 예측할 수 있다. (9) 미세 굴곡 해석(Surface Defects) 성형 후 발생하는 미세 굴곡을 예측할 수 있다. 다양한 표면굴곡을 예측할 수 있으며, 이를 시각화하여 보다 사용자가 쉽게 판단할 수 있도록 도와준다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-30
제너레이티브 설계 솔루션, MSC Apex
제너레이티브 설계 솔루션, MSC Apex   주요 CAE 소프트웨어 소개    ■ 개발 : MSC Software, www.mscsoftware.com/kr ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr 1. MSC Apex Generative Design - 자동화된 경량 설계 최적화 MSC Apex(에이펙스) Generative Design은 직관적인 CAE 환경, MSC Apex를 기반으로 제작된 완전 자동화된 제너레이티브 설계 솔루션이다. 이 제품은 기본적으로 혁신적인 제너레이티브 설계 엔진을 사용하고 있으며, 또한 MSC Apex의 사용하기 쉽고 배우기 쉬운 기능을 활용한다. 따라서 설계 최적화 워크플로에 필요한 노력과 비용을 크게 줄일 수 있다. MSC Apex Generative Design은 적층 공정으로만 제조할 수 있는 세밀하고 매우 복잡한 구조를 생성하도록 특별히 개발되었다. 혁신적인 응력 기반 알고리즘은 무게를 최소화하고 기존의 사고방식으로는 상상할 수 없는 독특한 형상을 안정적으로 이끌어낼 수 있다. ■ 편리하고 쉬운 사용법 : 사용자 중심 소프트웨어 디자인을 통해 별도의 전문 지식 없이도 최적화를 쉽게 수행할 수 있다. ■ 자동화된 디자인 : 무게는 최소화하면서 디자인 기준을 모두 만족하는 여러 개의 디자인 후보를 자동으로 생성할 수 있다 ■ 가져오기 및 검증 : 단일 CAE 환경에서 기존 형상 또는 메시를 가져와서 최적화된 디자인 후보를 찾고, 디자인 검증을 수행할 수 있다. ■ 직접 출력 : 수동 재작업 없이 직접 제조하여 즉시 사용할 수 있는 형상을 내보낼 수 있다. ■ 단일 프로세스 : Simufact Additive 또는 Digimat AM으로 결과 형상을 가져와서 모든 부품에 대해 비용 효율적이며 최초의 적정한 결과를 얻을 수 있다. (1) 주요 기능  ■ CAD 파일 불러오기  ■ 다양한 설계 형상 제공  ■ 선형 해석의 하중 케이스를 이용한 자동화된 최적화 프로세스  ■ 정확하고 부드러운 표면으로의 효율적 전환 & 스트럿 및 쉘 구조 요소 사이에 완벽한 전환  ■ 응력 기반 알고리즘을 통한 많은 무게 감소  ■ 짧은 시간 안에 다양한 설계 형상을 제공하는 제너레이티브 디자인 연구  ■ CPU, Nvidia GPU를 이용한 해석 기능과 Windows & Linux 환경에서의 원격 작업  ■ 로컬 좌표계, 압력, 중력 고려  (2) 적용 효과  ■ 수동 작업이 필요하지 않은 새롭고 혁신적인 설계 구조  ■ 별도의 사용법을 배우지 않아도 사용하기 쉬운 소프트웨어  ■ 효율적이고 혁신적인 제품 설계를 통한 비용 절감  ■ 최적화 설정을 토대로 여러 개의 설계 후보 생성  ■ 실현 가능한 부품 설계 생성  ■ 적층 제조 생산에 적합  ■ 기계적 무결성 및 제조 능력 검증을 위한 상호 호환성  ■ 유기 형태의 설계를 통한 경량화 및 생산 및 운영 비용 절감 2. MSC Apex | Modeler - 직접 모델링, CAD&메시 솔루션 MSC Apex Modeler는 CAD 형상 정리, 메시 생성, 물성 및 하중 부여 작업의 워크플로를 간소화고 CAE에 특화된 직접 모델링이 가능한 CAD와 메시가 상호 작용하는 솔루션이다 ■ 스마트 도구 : MSC Apex는 매우 빠르고 효율적인 방식으로 CAD 형상 정리를 수행할 수 있는 직접 모델링 도구를 제공한다. 형상 수정이 필요한 대상을 선택하고 마우스를 이용해서 밀거나 당기거나 드래그하여 수정할 수 있다. 이러한 도구를 통해 사용자는 CAD를 정리할 수 있으며, 작업량을 10분의 1까지 줄일 수 있다. ■ 제품 워크플로 : MSC Apex는 스마트한 FEA/CAE 워크플로를 목표로 설계되었다. 대표적인 예로 3D 모델을 2D 모델로 빠르게 만들어주는 미드 서피스 추출 기능이 있다. 사용자는 MSC Apex에서 제공하는 워크플로를 통해 일반적인 CAD에서 해석이 가능한 FEA 모델까지 10배 이상의 생산성을 높일 수 있다. ■ 기반 기술 : MSC Apex는 제너레이티브 프레임워크를 통해서 CAD와 해석 데이터 간의 완전한 연관성을 가능하게 한다. 어셈블리 모델의 경우 일부 파트 변경이나, CAE 모델을 수정할 경우에 유용하다. 상위 모델이 수정되면 메시, 물성, 하중 등을 포함하여 수정된 사항이 하위 모델에 자동으로 동기화된다. 이러한 직접 모델링은 사용자에게 많은 이점을 제공한다. ■ 사용하기 쉽고 배우기 쉬움 : MSC Apex는 다양한 목적의 도구를 쉽게 사용할 수 있도록 설계되었다. 설치 시 내장된 튜토리얼, 비디오 기반 문서, 마우스 커서에 자동으로 나타나는 사용 방법과 같은 다양한 학습 도구를 제공한다 (1) 주요 기능 1) 스케치 ■ 선, 사각형, 원, 타원, Fillet, Chamfer 그리고 복잡한 형상을 스케치 평면 위에 직접 스케치 ■ 기존 스케치의 형상을 Project, split, 수정 가능 2) CAD 수정 ■ 점이나 선을 마우스 드래그를 이용해서 서피스 수정(Vertex/Edge drag) ■ 서피스를 마우스 드래그를 이용해서 솔리드 형상의 수정(Push/Pull) ■ 서피스의 자르기(Split), 채우기(Fill) ■ 메시에 영향을 주는 점을 추가/삭제, 선(curve)을 억제/억제 해제 ■ 어셈블리에서 특정 파트만 교체 가능(Part Replace) 2) 미드 서피스 생성 및 수정 ■ 오프셋 옵션(자동, 일정한 두께, 사용자 입력 등)에 따라 미드 서피스 추출 ■ 평면 또는 곡면 솔리드의 균일 또는 불균일한 두께의 중간면을 점진적으로 생성(Incremental mid-surface) ■ FEA 모델로부터 CAD 생성 ■ FEA 모델로부터 Facet 형상과 Nurbs 형상 생성, 수정, remesh ■ 일부 FEA만 Facet 형상 생성 후에 메시 수정하면 기존 FEA의 물성, 두께, connector 등도 자동 업데이트 ■ 2D, 3D FEA 모델로부터 2D, 3D CAD 생성 ■ 생성된 CAD 내보내기 가능 3) 메시 및 메시 수정 ■ curve, surface, solid에 메시 ■ Beam, Quad, Tria, Tet, Hex 메시 ■ CAD가 수정될 때 자동으로 메시 재 생성  ■ Feature Base Meshing, mesh Seeding, mesh control curve를 통한 메시 개선 ■ 부품 연결을 용이하게 하는 Hard Point ■ 다양한 map mesh 옵션 ■ 시각적인 element quality 확인 및 편리한 수정 4) 모델 특성 ■ 물성 생성 및 할당 ■ 자동 두께 할당(균일하지 않은 단면 및 오프셋 특성 고려 가능) ■ 부품 연결 : 접촉(Mesh Independent Die), RBE2/RBE3 요소(Discrete Tie)  ■ 중력, 하중, 강제 변위, 구속, 압력 하중  5) MSC Nastran과 상호 운용성 ■ MSC Nastran 데이터(bdf,op2,h5) 지원, 가져오기 및 내보내기  ■ Adams/Car 모델 및 결과 데이터 확인 가능  ■ 단일 환경에서 Adams/Car 결과 데이터를 구조 FEA 모델에 연결 및 하중 매핑 가능 6) 후처리  ■ 이미지 캡처/동영상 녹화 기능 포함 ■ 멀티뷰를 통한 결과 탐색 환경 지원 7) Python 기반의 API를 통한 자동화 ■ 반복적인 작업을 자동화하고 사내 워크플로를 개발할 수 있는 사용자 정의 도구 ■ 완벽한 통합 개발 환경(IDE) 지원 ■ 코딩 없이 Micro Record/Play로 간편한 사용 3. MSC Apex | Structures - Computational parts 기반의 구조 해석 MSC Apex Structures는 유한 요소 해석 솔버가 통합된 모듈로 사용자에게 선형(비선형 기능 지원 예정) 구조 해석에 대한 접근을 제공한다. 현재 MSC Apex는 선형 정적, 선형 좌굴, 노말 모드 및 주파수 응답 해석을 포함한 4가지 유형의 선형 해석을 지원한다. MSC Apex Structures는 시나리오 정의, 해석 준비 상태 확인 및 통합 솔버를 위한 직관적인 사용자 인터페이스가 포함된 패키지이다. 사용자 인터페이스와 솔버의 통합은 사용자에게 FEA 모델을 대화식으로 그리고 점진적으로 검증하고 해결할 수 있는 고유한 기능을 제공한다. 이 점진적인 검증 및 해석은 전처리/후처리 프로세스와 솔버가 분리되어 매우 시간이 많이 소요되는 기존 FEA 워크플로에 대한 창의적이고 지능적인 방식의 변화이다. MSC Apex - MSC Nastran - MSC Apex의 워크플로를 지속적으로 확장하여 사용자는 다양한 설계 단계 및 작업에 따라 최상의 시나리오를 선택할 수 있다. ■ 시나리오 1 - MSC Nastran 솔버 사용 : 기존의 MSC Nastran 솔버 사용자는 MSC Nastran 솔버를 사용한다. ■ 시나리오 2 - MSC Nastran 솔버를 지원하는 내장된 MSC Apex Structures : 통합된 솔버는 해석 사전 검증 기능을 이용해서 FEA 모델을 생성한다. 생성된 FEA 모델을 MSC Nastran으로 외부에서 해석할 수 있으며 MSC Apex를 통해서 후처리 작업이 가능하다. ■ 시나리오 3 - 내장된 MSC Apex Structures 솔버 사용 : 내장된 MSC Apex 솔버의 모든 기능을 할 수 있다.
작성일 : 2023-12-25
구조 해석 소프트웨어, LS-DYNA
주요 CAE 소프트웨어 소개 ■ 개발 : Livermore Software Technology, www.lstc.com ■ 자료 제공 : 한국시뮬레이션기술, 031-903-2061, www.kostech.co.kr LS-DYNA는 대변형(Large deformation)이 발생하고 복잡한 비선형 소재특성(Non-linear Material)과 복잡한 접촉(Complex Contact) 조건의 구조 역학 문제에 대한 동적 거동 물리현상을 해석하는데 적합한 프로그램이다.  이러한 복잡한 문제를 매우 짧은 시간에 해결할 수 있도록 데스크톱 컴퓨터 및 클러스터의 리눅스, 윈도우 및 유닉스 환경에서 실행되는 SMP(Symmetric Multi Processing) 및 MPP(Massively Parallel Processing) Solver를 제공하고 있다. 1. 주요 특징 LS-DYNA의 ‘One model’ 및 ‘One Code’ 개념과 기능을 통해 사용자는 하나의 시뮬레이션 모델을 구조, 유체, 충돌 및 고유값 시뮬레이션을 비롯한 여러 유형의 시뮬레이션에 적용할 수 있다. 뿐만 아니라 ‘Multi-Physics’, ‘Multi-Processing’, ‘Multiple Stages’, ‘Multi-Scale’이 필요한 문제를 하나의 코드로 결합하여 원활하게 해결할 수 있는 기능을 제공하고 있다.  LS-DYNA는 explicit와 explicit의 시간 증분 방식 간의 상호 호환이 가능하며 열연성해석(coupled thermal analysis), CFD(Computational Fluid Dynamics),FSI(fluid-structure interaction) SPH(Smooth Particle Hydrodynamics), EFG(Element Free Galerkin), CPM(Corpuscular Method), BEM(Boundary Element Method)과 같은 이질적인 분야를 결합할 수 있다.   2. 주요 활용 분야 LS-DYNA에서 제공하는 이러한 다양한 솔루션 및 기능은 여러 분야에서 활용되고 있으며, 대표적인 해석 분야는 다음과 같다. ■ Crashworthiness/ Driver Impact / Drop test simulation ■ Mesh Free Method : ALE, EFG, SPH, Airbag particle ■ Heat Transfer Analysis ■ Metal Forming Analysis ■ Earthquake Engineering ■ Acoustic / Vibration / Fatigue ■ Discrete element method ■ CFD(incompressible, compressible) ■ EM(Electromagnetism)   3. 제품 구성 (1) LS-DYNA Solver LS-DYNA는 사용자의 다양한 사용환경에 맞추어 LS-DYNA Solver를 사용할 수 있도록 여러 플랫폼의 Solver를 제공하고 있다. 윈도우의 경우 기존의 LS-DYNA Manager뿐만 아니라 MPP 환경도 제공하는 Winsuit을 제공하고 있으며, 리눅스와 유닉스의 경우 OS와 MPI 플랫폼 환경에 따라 각각 별도의 Solver를 제공하고 있다. (2) LS-PrePost  LS-PrePost는 키워드 입력 파일을 기반으로 LS-DYNA 모델을 가져오고 편집하고 내보내는 등의 기능을 통하여 LS-DYNA의 입력 파일을 편집하는 Preprocess 전문 툴이다. 동시에 LS-DYNA의 해석 결과를 불러들여 3차원 애니메이션, 응력과 변형류의 시간 이력, XY Plot 등등 LS-DYNA의 해석 결과를 다양한 방법으로 확인할 수 있는 GUI를 제공하고 있다.  (3) LS-OPT LS-OPT는 LS-DYNA의 최적화 도구로서 디자인 스페이스를 쉽게 조사하고 최적 디자인을 찾는 환경을 제공한다. 또한, 문제 정의 시스템을 위한 솔루션도 함께 제공한다. LS-OPT는 SRSM(Successive Response Surface Method)과 통계학적인 접근(Robustness analysis)에 기반하고 있다.    (4) LS-TaSC LS-TaSC는 토폴로지 및 형상 계산 툴이다. LS-TaSC는 동적 하중 및 접촉 조건이 관련되어 있는 비선형 문제들의 토폴로지 최적화를 가능하게 한다. (5) LSTC Dummy / Barrier Model LS-DYNA 개발사에서는 LS-DYNA 사용자의 비용 절감을 위해서 다양한 종류의 Dummy Model과 Barrier Model을 제공하고 있다. 이들 모델은 주기적으로 업데이트되어 기존 모델의 변경 사항을 반영하고 새로운 모델을 출시하고 있다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25
크레아폼, 대형 부품 측정을 위한 이동식 3D 스캐너 핸디캠 3D 맥스 시리즈 출시
자동화 휴대용 3D 측정 솔루션 기업인 크레아폼(Creaform)이 자사의 주력 제품군인 핸디캠 3D 라인업에 맥스(HandySCAN 3D|MAX) 시리즈 신제품을 추가했다. 핸디캠 맥스 시리즈 제품군은 약 1m×1m의 넓은 3D 스캐닝 면적을 제공하는 산업용 3D 스캐너로, 다양한 종류의 크고 복잡한 표면의 제품을 정확히 3D 측정할 수 있도록 돕는다. 빠른 스캐닝 모드와 최대 해상도 모드 등 다양한 스캐닝 모드를 제공해 최대 15m의 대형 부품 및 어셈블리 측정을 최적화하고 활용성을 높인 것이 특징이다. 큰 부피의 표면 측정, 정확도, 휴대성 및 단순성의 효과를 결합한 맥스 시리즈는 항공우주, 운송, 에너지, 광업 및 중공업 부품의 측정의 간편성과 효율을 높였고, 측정 프로세스 또한 향상시킨다.     맥스 시리즈는0.100mm + 0.015mm/m의 공간 정확도를 지원하고, ISO 17025 인증 및 VDI/VDE 2634 파트 3 표준 준수를 갖춘 전문가 등급의 결과를 제공하여 품질 관리뿐 아니라 허용오차가 낮은 부품과 대형 부품의 정밀함을 요구하는 리버스 엔지니어링 분야에도 적용할 수 있다. 또한 크레아폼의 다이내믹 레퍼런싱 알고리즘을 탑재하여 실험실과 작업장뿐만 아니라 실외에서도 정확하게 3D 스캔을 할 수 있다. 작업자는 플러그 앤 플레이를 통해 빠르게 스캔 작업을 준비할 수 있으며, 3D 스캔을 여러 CAD 소프트웨어에 통합할 수 있어 대형 부품 및 어셈블리 분야 리버스 엔지니어링, 3D 검사 및 제품 개발 시간을 줄일 수 있다. 맥스 시리즈가 지원하는 플렉스 볼륨(Flex Volume) 기능은 짧은 초점 거리에서는 고품질로 스캔하고 대형 부품을 측정할 때에는 긴 초점 거리에서 초고속 측정을 지원한다. 스마트 서피스 알고리즘은(Smart Surface Algorithm) 인공지능과 결합된 정교한 이미지 처리 기능을 통해 추적, 성능 향상, 까다롭고 대비되는 마감의 판독 기능 향상, 표면 측정 단순화를 통한 스캐닝 프로세스의 단순화 등을 지원한다. 그리고 캘리브레이션 단계를 스캐닝 워크플로에 직접 통합해 실시간 캘리브레이션을 자동으로 수행할 수 있다. 한편, 크레아폼은 11월 9일 ‘2023 한국 유저 미팅’을 진행하면서 이번 신제품을 소개하는 한편 3D 측정 기술을 통해 제조산업의 제품 개발 및 품질 관리를 디지털화할 수 있는 기술 트렌드와 사례 등을 소개했다.
작성일 : 2023-11-09
[무료다운로드] 딥러닝을 사용한 해석 데이터 기반 메타모델 살펴보기
앤시스 워크벤치를 활용한 해석 성공 사례   최근, 다양한 실험 및 해석에서 축적된 데이터와 인공지능 기술의 발전으로 데이터 기반 설계(Data-Driven Design)가 활성화되고 있다. 특히 해석 데이터를 기반으로 한 메타모델은 빠른 예측 속도의 장점을 이용해 반복적인 예측이 요구되는 최적 설계와 실시간 예측이 필요한 디지털 트윈 분야에서 주로 사용되며, 부품과 시스템의 통합 최적설계나 생산 품질 관리와 같은 다양한 분야로 활용 범위가 확장되고 있다. 이번 호에서는 간단한 사례를 통해 데이터 기반 설계에서 활용되는 딥러닝 기술과 해석 데이터를 이용한 메타모델을 소개한다. 그리고 딥러닝 프로그래밍 작업 없이 해석 데이터 기반 메타모델을 쉽게 생성할 수 있는 다양한 환경과 제작 방법부터, 생성된 메타모델을 다양한 환경에서 효율적으로 사용하기 위해 FMI(Functional Mock-up Interface) 기술로 제작하는 FMU(Functional Mock-up Unit)의 생성 및 사용법까지 다루도록 하겠다.   ■ 권기태 태성에스엔이의 EBU_LF팀 수석매니저로 해석자동화 업무 및 기술지원을 담당하고 있다. 이메일 | gtkweon@tsne.co.kr 홈페이지 | www.tsne.co.kr   메타모델이란 우선, 메타모델의 정의와 활용에 대해 짚고 넘어가보자. 메타모델(metamodel)은 ‘모델의 모델’이라는 의미로, 복잡한 모델을 간소화하여 설명하거나 정의하는데 사용된다. 근사방법(approximation method)을 사용해 원래의 모델을 재모델링함으로써 만들어지는 간결한 형태의 모델을 의미한다. 이러한 메타모델의 정의나 활용은 적용되는 분야에 따라 다르게 사용된다. 우선 기계학습의 메타모델은 다른 기계학습 모델을 이해, 분석, 또는 간략하게 표현하기 위한 목적으로 사용되며, 소프트웨어 엔지니어링 분야에서는 UML을 통해 시스템의 구조와 속성을 추상화하고 표준화하는데 사용된다. 시뮬레이션 및 최적화 분야의 메타모델은 복잡한 시뮬레이션 모델이나 실제 세계의 시스템을 간단한 수학적 모델로 대체하며, 이를 통해 저렴한 비용과 짧은 시간 안에 다양한 시나리오 탐색이나 최적의 해를 찾는 데 활용된다. 시뮬레이션 및 최적화 분야에서도 메타모델은 목적이나 관점에 따라 여러 용어로 불린다. 가장 먼저, 복잡하거나 계산에 많은 비용이 소요되는 모델, 또는 실제 실험을 단순하고 효율적인 형태로 근사화한 모델이란 의미의 대리자 모델(surrogate model)이 있다. 더불어 고차원이나 복잡한 시스템의 동적 거동을 낮은 차원이나 작은 수의 변수를 사용하여 효과적으로 근사화하는 방식의 ROM(Reduced-Order Modeling)이 있다. 또한 데이터를 사용하여 복잡한 시스템의 응답을 모델링하고 최적화하기 위한 통계적 방법이란 의미의 RSM(Response Surface Model)과 최적화 프로그램 안에서 시간이 많이 소요되는 CAE 시뮬레이션을 대신하여 사용되는 대리자 모델인 MOP(Meta-Model of Optimal Prognosis)란 용어도 사용되고 있다.   해석 데이터 기반 메타모델 컴퓨터 하드웨어의 발전과 함께 공학 설계 기술은 실험 중심의 설계에서 시뮬레이션 기반의 설계로 급속도로 전환되었다. 더욱이, 최근에는 실험과 해석에서 축적된 데이터와 인공지능 기술의 발전으로 데이터 기반 설계가 활성화되는 만큼, 데이터 기반 설계에서 사용되는 데이터 기반 메타모델의 중요성도 같이 증가하고 있다. 메타모델은 복잡한 시스템이나 모델을 간단히 표현하기 위해 확보된 데이터를 수학적 기법이나 인공지능 기술로 처리하여 제작한다. 특히, 인공지능과 시뮬레이션 기술의 발전으로 해석 데이터를 활용한 딥러닝 기반의 메타모델이 주목을 받고 있다. 해석 데이터는 측정 데이터와 비교해 입력과 출력 데이터의 노이즈가 적고, 스크립트 자동화를 이용해 원하는 조건으로 데이터를 쉽게 확보할 수 있다는 장점이 있다. 딥러닝 기술을 이용한 메타모델은 복잡한 수학적 지식 없이 구현이 가능하며, 파이썬(Python) 환경에서 작업하기 때문에 파이썬의 강력한 기능을 효과적으로 활용할 수 있다.   메타모델의 활용 해석 데이터를 활용한 메타모델은 빠른 예측 속도의 장점을 활용하여 반복적이거나 실시간 예측이 필요한 분야에서 주로 사용된다. 그러나 해당 메타모델은 해석 데이터를 생성할 때 사용된 변수로만 입력 값이 제한되기 때문에, 설계인자가 고정된 상황에서만 적합하다는 단점이 있다. 이러한 메타모델의 장단점을 고려하여 활용 가능한 분야를 도출하면 <그림 1>과 같다. 설계 최적화 및 민감도 분석 : 반복적으로 사용되는 빠른 예측 복잡한 시스템의 최적설계 : 요소부품과 시스템의 통합적 최적설계에서 부품 메타모델 생산 품질 관리 : 설계가 확정된 후 생산 과정의 변동 관리 디지털 트윈 : 설비의 운용 효율을 최적화하기 위해 실시간 예측   그림 1. 디지털 엔지니어링의 구성 요소   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-11-02
복잡한 선박 형상의 메싱 간소화
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (3)   유동해석 시 형상이 고도화될수록 메시 생성과 관련된 복잡성도 증가한다. 메시 생성의 복잡성은 요소의 유형 및 구조, 기하학, 위상, 사용자 전문 지식, 응용 프로그램 및 메시 생성 알고리즘 선택과 같은 여러 요소와 관련될 수 있다. 엔지니어의 요구사항이 진화함에 따라 상업용 메싱 소프트웨어는 점점 더 복잡한 메시 구성을 처리해야 했다. 케이던스 피델리티(Cadence Fidelity) CFD 플랫폼은 leading/blunt edge, 자유 표면, 경계층, 점성층 등을 위한 다양한 메시 생성 기술을 제공한다. 이 글에서는 복잡한 선박 형상의 메시 생성을 간소화하기 위한 몇 가지 전략을 소개한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   Meshing Strategies   그림 1   Volume to Surface V2S(Volume to Surface)는 복잡한 기하 형상에도 적용할 수 있는 강력하고 병렬화된 메시 처리 방식이다. 교차 또는 비일치 표면(intersecting or non-conformal surface)이 있는 지저분한 형상에도 적용이 가능하며 사전 표면 메시가 필요하지 않다. 케이던스의 V2S 메싱 기술은 전체 육면체(full-hexahedral) 및 육면체 우세(hexa-dominant) 비정렬(unstructured) 메시를 모두 생성할 수 있다. 전체 육면체 메시는 행잉 노드를 사용하여 일관된 육면체 구조를 유지하는 반면, 육면체 우세 메시는 사면체를 사용하여 행잉 노드 없이 다양한 크기의 육면체 섹션을 연결한다.   그림 2. V2S full hex mesh   Surface to Volume S2V(Surface to Volume)는 결함 허용(fault-tolerant) 메시 처리 방식이며 이를 통해 고품질의 표면 메시와 점성 레이어를 생성할 수 있다. 그리고 이를 구현하기 위해 비교적 깨끗한 형상이 필요하다. 이 방식을 사용하면 형상의 표면에는 비정렬 쿼드 우세(quad-dominant) 메시가 생성되고 공간에는 완전 사면체 또는 육면체 우세 볼륨 메시가 생성된다.   그림 3. S2V hex-core mesh   두 메싱 접근 방식 모두 해석 솔버 종류에 구애받지 않는다. 또한 케이던스 피델리티 플랫폼은 특정 솔버에 맞게 메시를 조정할 수 있는 전용 메시 품질 최적화 기능을 제공한다.   Surface refinements 옵션으로 제공되는 표면 및 로컬 미세화(surface and local refinement) 기능을 사용해 원하는 영역의 메시 해상도를 증가시킬 수 있다. 메시의 균일성(Mesh uniformity), 가장자리 근접성(edge proximity), 로컬 곡률(local curvature)의 세 가지 옵션을 사용해 원하는 표면의 메시를 원하는 해상도로 미세화할 수 있다.   Global Settings 다수의 표면을 가진 복잡한 형상을 작업할 때 각 표면을 세분화하고 표면 가장자리 간의 근접성을 확인하는 것은 지루한 작업일 수 있다. 이러한 경우에는 전역(global) 설정을 사용하여 전체 형상을 한 번에 미세화할 수 있다. <그림 4>에 설명된 선박 상부 구조물의 기하학은 V2S 접근 방식을 사용하여 피델리티 CFD 플랫폼에서 메싱되었다. 전역 매개 변수만 사용하였으며 로컬 미세화 옵션은 적용하지 않았다. 추가적으로 물리적 설계에 중요한 영역에는 표면 메시 미세화를 적용할 수 있다.   그림 4. 페리의 모든 표면을 다듬기 위해 Global Setting이 사용되었다.   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-11-02